Quantcast
Channel: Garden Solar Panels
Viewing all articles
Browse latest Browse all 8

Garden Solar Panels

$
0
0

Having solar panels in your garden is a great choice when you want to live green 247.

 

A solar panel (also solar module, photovoltaic module or photovoltaic panel) is a packaged connected assembly of photovoltaic cells. The solar panel can be used as a component of a larger photovoltaic system to generate and supply electricity in commercial and residential applications. Each panel is rated by its DC output power under standard test conditions, and typically ranges from 100 to 320 watts. The efficiency of a panel determines the area of a panel given the same rated output – an 8% efficient 230 watt panel will have twice the area of a 16% efficient 230 watt panel. Because a single solar panel can produce only a limited amount of power, most installations contain multiple panels. A photovoltaic system typically includes an array of solar panels, an inverter, and sometimes a battery and or solar tracker and interconnection wiring.

 

Solar panels use light energy (photons) from the sun to generate electricity through the photovoltaic effect. The structural (load carrying) member of a module can either be the top layer or the back layer. The majority of modules use wafer-based crystalline silicon cells or thin-film cells based on cadmium telluride or silicon. The conducting wires that take the current off the panels may contain silver, copper or other non-magnetic conductive transition metals.

The cells must be connected electrically to one another and to the rest of the system. Popular photovoltaic panels, in terrestrial applications typically use MC3 (older) or MC4 connectors to facilitate easy weatherproof connections. Cells must also be protected from mechanical damage and moisture. Most solar panels are rigid, but semi-flexible ones are available, based on thin-film cells.

Electrical connections are made in series to achieve a desired output voltage and/or in parallel to provide a desired current capability.

Separate bypass diodes may be used, in case of partial panel shading, to maximize the output of panel sections still illuminated. The p-n junctions of mono-crystalline silicon cells may have adequate reverse current characteristics to prevent any reverse panel section curent. Reverse currents could lead to overheating of shaded cells. Solar cells become less efficient at higher temperatures and installers try to provide good ventilation behind solar panels.[1]

Some recent solar panel designs include concentrators in which light is focused by lenses or mirrors onto an array of smaller cells. This enables the use of cells with a high cost per unit area (such as gallium arsenide) in a cost-effective way.[citation needed]

Depending on construction, photovoltaic panels can produce electricity from a range of frequencies of light, but usually cannot cover the entire solar range (specifically, ultraviolet, infrared and low or diffused light). Hence much of the incident sunlight energy is wasted by solar panels, and they can give far higher efficiencies if illuminated with monochromatic light. Therefore, another design concept is to split the light into different wavelength ranges and direct the beams onto different cells tuned to those ranges.[2] This has been projected to be capable of raising efficiency by 50%.

Currently the best achieved sunlight conversion rate (solar panel efficiency) is around 21% in commercial products,[3] typically lower than the efficiencies of their cells in isolation. The energy density of a solar panel is the efficiency described in terms of peak power output per unit of surface area, commonly expressed in units of watts per square foot (W/ft2). The most efficient mass-produced solar panels have energy density values of greater than 13 W/ft2 (140 W/m2).


Viewing all articles
Browse latest Browse all 8

Latest Images

Trending Articles





Latest Images